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Abstract

An advanced lubrication technology of a bearing material, which is carbon chromium steel, was experimentally investigated under gas lubricated conditions using Taguchi method. The test was performed over a broad range of applied loads (W), sliding velocities (v) and sliding distances (L) using a modified ball-on-disc tribometer. The results found that gas blown to the sliding surfaces in air effectively reduced the coefficient of friction as compared with the air lubrication at higher applied load, sliding speed and sliding distance. In addition, a specific wear rate is constant throughout the tests under gas lubricated conditions. However, the specific wear rate decreases with increasing applied load, sliding speed and sliding distance under air lubrication. By using the optimal design parameters, a confirmation test successfully verify the N2-gas lubrication reduced coefficient of friction and simultaneously improved wear resistance about 24% and 50%, respectively. This is in accordance with a significant reduction of wear scar diameter and smoother worn surface on a ball.
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1. Introduction

Ball bearings are small metal balls that are used in a wide variety of machines and other devices, allowing parts of them to spin freely and without friction. However, these ball bearings will sometimes run into problems due to overuse, extreme vibrations or improper upkeep [1]. Besides, the bearing lubricants such as grease must be replaced periodically and if bearing gets too warm, grease melts and runs out of bearing.
Nowadays, there are a great variety of advanced lubrication technologies includes thin film coatings [2-5], nanolubricants [6] and gas lubricant [7-10]. However, gas lubrication is the most cost effective and has several advantages, such as high precision, small friction loss, non–polluting, vibration-free, long life and attractive for high-temperature applications [11]. 
Cong et al. [7] found that HFC-134a gas significantly reduces the friction and wear of all the ceramic couples (ionic ceramics Al2O3 and ZrO2, and the covalent ceramics Si3N4 and SiC rubbing against an Al2O3 ball), and that the ionic ceramic pairs show lower friction and wear. Oxygen has been found to lubricate SiC by the formation of silica and the release of graphite-like material [8], while benzene and acetone vapors have been found to form sticky reaction products, which reduce the friction and wear of ZrO2 [9]. 
From the past researches, friction and wear of materials are effectively reduced by different gas lubrications. However, researches on this topic are not much explored. Thus, in this study, the friction and wear behaviors of bearing material, which is carbon-chrome steel, sliding in air with O2- or N2-gas blows, are investigated using a systematic approach, which is Taguchi method. Additionally, the optimal design parameters are obtained by employing analysis of signal-to-noise (SN) ratio. Then, a confirmation test was carried out to verify the improvement of the quality characteristic using optimal levels of the design parameters.
2. Experimental procedures
2.1 Design of Experiment (DoE)
Prior to experimental work, design of experiment (DoE) using Taguchi method was employed. Four design parameters were determined (lubricant, applied load, sliding speed and sliding distance) and three levels were taken for each parameter, as shown in Table 1. 

Table 1: Design parameters at three different levels.
	Level
	Design parameters

	
	Lubricant
	Applied load (W), N
	Sliding speed (v), rpm
	Sliding distance (L), km

	1
	Air
	5
	50
	1

	2
	N2-gas
	10
	1000
	3

	3
	O2-gas
	20
	1500
	5



In this study, the L9 (34) orthogonal arrays was selected using Minitab statistical software, as shown in Table 2. 

Table 2: Taguchi L9 (34) orthogonal arrays.
	Test
	Design parameters

	
	Lubricant
	Applied load (W), N
	Sliding speed (v), rpm
	Sliding distance (L), km

	1
	Air
	5
	500
	1

	2
	Air
	10
	1000
	3

	3
	Air
	20
	1500
	5

	4
	N2-gas
	5
	500
	5

	5
	N2-gas
	10
	1000
	1

	6
	N2-gas
	20
	1500
	3

	7
	O2-gas
	5
	500
	3

	8
	O2-gas
	10
	1000
	5

	9
	O2-gas
	20
	1500
	1


2.2 Materials
The materials used in this study were carbon-chrome steel (SKF bearing) for a ball and EN-31 steel for a disc. The ball has an average surface roughness (Ra) of 0.023µm. The mechanical properties of materials are shown in Table 3.

Table 3: Mechanical properties of materials.
	Properties
	Carbon chromium steel1
	EN-312

	Hardness (H), HRC
	61
	80

	Density (), g/cm3
	7.79
	7.81


	1From laboratory measurements.
	2From manufacturer.

2.3 Tribological testing
By selecting L9 Taguchi’s orthogonal arrays as in Table 2, nine sliding tests were carried out using a ball-on-disc tribometer in accordance with ASTM standard G99-95a [12], as illustrated in Fig. 1. Each test was repeated two times in order to reduce experimental errors. Gas was blown to the sliding surfaces in air at a constant pressure of 10psi (70kPa), as shown in Fig. 2. All tests were performed at room temperature. Prior to the sliding test, both ball and disc were cleaned using acetone in an ultrasonic bath. The ball and disc has a diameter of 11mm and 165mm (thickness of 8mm), respectively.
A coefficient of friction and frictional force encounter by the ball in sliding were measured by a PC based data logging system. The coefficient of friction is then being determined as follows:

		(1)

Where F is the frictional force in N and W is the applied load in N.
The wear at the ball was recorded by measuring the mass of the ball before and after the wear test. The mass loss in mass unit is converted to the volume loss by dividing with bulk density of material. The specific wear rate is then being determined as follows:

		(2)


		(3)

Where Vloss is the volume loss in mm3, mloss is the mass loss in g,  is the bulk density of material in g/mm3, k is the specific wear rate of material in mm3/Nmm, W is the applied load in N and L is the sliding distance in mm.
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Fig. 1: Schematic diagram of a ball-on-disc tribometer. 
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Fig. 2: Photograph of a modified ball-on-disc tribometer with gas blown to the sliding surfaces. 















3. Results and discussion
3.1 	Effect of gas lubrication on friction and wear behaviors of bearing material
Generally, two surfaces of adjacent moving parts can be seperated by a thin film to minimize direct contact between them and provides an interface of low shear strength, hence reduce friction and wear. In this study, the presence of gas lubrication potentially created a thin film and lowered the coefficient of friction at higher applied load, sliding speed and sliding distance as compared with the air lubrication, as shown in Fig. 3. This may be due to the shear strength increases less in proportion to the applied load, sliding speed and sliding distance; this leads to a slight reduction of friction.
From Fig. 4, a specific wear rate is constant throughout the tests under gas lubricated conditions. On the other hand, the specific wear rate decreases significantly with increasing applied load, sliding speed and sliding distance under air lubrication. With further increase in load, speed and distance; frictional heating may occur due to the interaction of the asperities of two contact surfaces and in this case the wear process may consist of formation and removal of oxide on the surface, as shown in Fig. 5, resulting in reduction of wear rate. 

[image: ]
Fig. 3: Interaction plot for coefficient of friction.

[image: ]
Fig. 4: Interaction plot for specific wear rate.
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Fig. 5: EDX spectrum at the worn surface of a bearing material.

3.2 	Optimal design parameters
According to Taguchi method studies, response variation using the signal-to-noise (SN) ratio is important, because it can result in the minimization of quality characteristic variation, due to uncontrollable parameters. The coefficient of friction was considered as being the quality characteristic, using the concept of the “smaller-the-better”. The SN ratio used for this type of response was given by:


		(4)

Where, n is the number of measurement values in a test, in this case, n = 2, and y is the measured value in the test. SN ratio values are calculated by taking into consideration Eqn. 4. 
The coefficient of friction values measured from the test, and their corresponding SN ratio values, are shown in Fig. 6. A greater SN ratio value corresponds to a better performance (low coefficient of friction). A small increase as a mean of SN ratio indicating that the presence of N2-gas lubrication effectively reduced coefficient of friction. In this study, the optimal design parameters for a lower coefficient of friction are identified as follows: lubricant = N2, W = 10N, v = 1000rpm, L = 1km.

[image: ]
Fig. 6: Mean of SN ratio for coefficient of friction. The optimal design parameter is shown by a red circle.

3.3 	Confirmation test
A comparison between the optimized values in air and N2-gas lubrication is shown in Fig. 7. A confirmation test can successfully verify the N2-gas lubrication reduced coefficient of friction and simultaneously improved wear resistance about 24% and 50%, respectively. This is in accordance with a significant reduction of wear scar diameter on a ball, as shown in Fig. 8. Furthermore, Fig. 9 shows that a smoother worn surface (Ra = 0.162µm) was also obtained under N2-gas lubricated conditions.

[image: ]
Fig. 7: A confirmation test results by comparing (a) the coefficient of friction and (b) specific wear rate of a material under air and N2-gas lubricated conditions using optimal design parameters.
[image: ]
Fig. 8: Scanning Electron Microscopy (SEM) of worn surfaces on a ball under air and N2-gas lubricated conditions using optimal design parameters.

[image: ]
Fig. 9: Surface profile of worn surfaces on a ball under air and N2-gas lubricated conditions using optimal design parameters.
4. Conclusion

The following conclusions may be drawn from the present study:
a) As compared with the air lubrication, the presence of gas lubrication lowered the coefficient of friction at higher normal load, sliding speed and sliding distance. This may be due to the shear strength increases less in proportion to the applied load, sliding speed and sliding distance. 
b) A specific wear rate is constant throughout the tests under gas lubricated conditions. On the other hand, the specific wear rate decreases with increasing applied load, sliding speed and sliding distance under air lubrication. With further increase in load, speed and distance; frictional heating may occur and wear process may consist of formation and removal of oxide on the surface, resulting in reduction of wear rate. 
c) The optimal design parameters for a lower coefficient of friction are: lubricant = N2, W = 10N, v = 1000rpm, L = 1km.
d) By using the optimal design parameters, a confirmation test successfully verify the N2-gas lubrication reduced coefficient of friction and simultaneously improved wear resistance about 24% and 50%, respectively. This is in accordance with a significant reduction of wear scar diameter and smoother worn surface on a ball.
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